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This note describes adiabatic models which can faithfully characterize the 

measured quench behavior of Nb3Sn strands with extremely low RRR value. Two major 

instability mechanisms – magnetization and self field - have been considered and 

implemented as a source of the heat generation. Both mechanisms have been applied 

separately and jointly to compare their predictions with experimental data.    
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1 Introduction 

 

 
 For the past year several Nb3Sn strands quench behavior was extensively studied 

[1]-[3] using a special Voltage Spike Detection System (VSDS) and several different 

measurement techniques to shed light on conductor instabilities. Two different types of 

instability mechanisms were observed depending on the experimental conditioning of the 

sample. Starting the current ramp when the sample was not magnetized we obtained 

different VSDS signal shapes and quench current values as a function of the external 

magnetic field compare to the case when the sample was strongly magnetized which was 

achieved by ramping up the magnetic field at fixed current values until the sample has 

quenched.  

In order to model this quench behavior of the strand two instability mechanisms 

were considered: self field instability and magnetization instability. Modeling both 

instability mechanisms have the following assumptions. The potential energy stored in 

the superconductor due to self field or magnetization is released instantaneously 

(adiabatic approach). This modeling approach is an integral method which will assume 

that once the flux jump mechanism starts it will continue until the total stored energy 

have been released. 

The released energy will warm up the superconductor (no escape of heat will be 

assumed) and if the temperature is high enough that the superconductor can not carry, 

with a negligible electrical resistivity, the transport current it will quench. 

In chapter 2 the strand geometrical dimensions and detailed material properties 

will be described which are used in the model. Chapter 3 and 4 will summarize the 

magnetization stored energy and self field stored energy calculations respectively. In 

chapter 5 the enthalpy calculation is described and the way how the model calculates the 

quench current value. In Chapter 6 and 7 the obtained results are described. Chapter 8 

and 9 describe the effect of the magnetization produced by the self-field. In chapter 10 

the model is compared with experimental data.  
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2. Strand geometrical and material properties 
 

2.1 Geometry of the 1mm MJR 
 

The MJR strand cross section, fig. 2.1.1, is composed by three regions: a central copper 

rod, a composite zone and an external copper shell. The composite region is made of 

hexagonal sub-elements; in our case the number of sub-elements is 54 (12 in the first, 18 

in the second and 24 in the third layer). After the heat treatment of the strand, each sub-

element has a central part made of bronze surrounded by Nb3Sn. This part of the sub-

element will be named ‘filament’; the filament area is generally named ‘non-copper 

area’. 

The external part of the sub-element is a thin copper layer which separates the filaments 

fro each other. 

SUPERCONDUCTOR 

BRONZE 

COPPER BETWEEN 

FILAMENTS 

COPPER 

 

SUBELEMENT 

Fig. 2.1.1 Geometry of a 1mm MJR strand 
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The area values for the different parts in the strand cross section are shown in tab. 2-1. 

 
Tab. 2-1 Areas in mm

2
  

Non-Cu Sub-elements Nb3Sn bronze Cu sub-elements Cu rod Cu shell 

0.422 0.474 0.305 0.117 0.052 0.0615 0.250 

 

The model, presented latter in the note, takes into account only the composite region. 

This region is approximated with an area within two circles (external and internal radius 

named to R and Rf respectively), fig.2.1.2. These values have been established using the 

following criteria: 

 

AreaRodCuR f __2 =π  � [ ]mmR f 14.0=  

 

( ) AreaelementsSubRR f _22 −=−π   � [ ]mmR 413.0=  

 

 

 

Another relevant parameter for the model is 

the ratio, λ, between the non copper area and 

the total area of the composite. For our 

geometry: 

 

89.0
_

_
=

−
−

=
areaelementsSub

areaCuNon
λ  

 

 

 

 

 

 

 

       

The filaments themselves will be approximated as circles with radius F. For the radius 

the following relation is assumed: 

 

filamentsofNumber

areaCuNon
F

__

_2 −
=π  � [ ]mF µ9.49=  

 

Fig. 2.1.2 Schematization of a 1mm MJR strand 
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2.2 Volumetric specific heat of Nb3Sn T<Tc 

 

For high fields and temperature below Tc the specific heat of the Nb3Sn follows the 

relation [4]: 

 

TTCNbSn ⋅+⋅= αβ 3   

 

Where α and β are functions of the magnetic field only. At lower fields this relation is 

valid only for temperatures between ~1.9 and 4.5K; in this temperature range α and β 

have been parameterized fitting the experimental data by Bouquet [5]: 

  

( ) [ ]121123 1034.91008.41048.4 −−−−− ⋅⋅⋅+⋅+⋅= gatKmJBBα  

 

( )( ) [ ]142 1722.11log1008.6 −−− ⋅⋅+⋅⋅⋅= gatKmJBβ  

 

The experimental data and the values obtained using the above relations are shown in fig. 

2.2.1 and 2.2.2 respectively. 

For temperatures higher than 4.5K and fields lower than 10T, this parameterization is not 

sufficiently accurate. 

At 0 and 4 T magnetic field values for temperatures higher than 4.5K, we will use the 

following parameterizations calculated by fitting experimental data between 4.5K and Tc 

[4]: 

 

{ } [ ]11231 42.206.11036.3)0( −−− ⋅⋅⋅⋅+⋅−⋅⋅= gatKmJTTTTCNbSn
 

 

{ } [ ]112131 83.21087.11092.2)4( −−−− ⋅⋅⋅⋅+⋅⋅−⋅⋅= gatKmJTTTTCNbSn
 

 

For field values between 0-4T and 4-10T we will use a weighted average: 

 








 −⋅+⋅=
4

1)0(
4

)4()(
B

TC
B

TCBC NbSnNbSnNbSn    0T<B<4T 

 








 −
−⋅+

−
⋅=

6

4
1)4(

6

4
)10()(

B
TC

B
TCBC NbSnNbSnNbSn   4T<B<10T 

 

In fig. 2.2.3 and 2.2.4 the experimental data [4] and the values calculated for 

temperatures higher than 4.5K are shown. 
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Fig. 2.2.1 Heat Capacity of Nb3Sn at 0, 0.5, 1, 2, 4, 7, 10, 13, 16 T; experimental data [5] 

 
Fig. 2.2.2 Calculated Heat Capacity of Nb3Sn at 0, 0.5, 1, 2, 4, 7, 10, 13, 16 T 
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Fig. 2.2.3 Heat Capacity of Nb3Sn at 0,4,10 and 16 T; experimental data [4] 

 

 
Fig. 2.2.4 Calculated Heat Capacity of Nb3Sn at 0,4,10 and 16 T 
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Taking into account that: 

 

[ ]molegat 25.01 =   [ ]ggatNbSn 5.991 =   [ ]38910 −⋅= mkgNbSnρ  [4] 

 

to convert the specific heat value into S.I. units, fig. 2.2.5, we have to introduce for the 

following multiplication factor: 

 

313

3

3

55.898910
105.99

101 −−−
−

−

⋅⋅⋅=⋅⋅
⋅⋅

=
⋅

mKJmkg
kgK

J

GatK

mJ
 

 

 
Fig. 2.2.5 Calculated Heat Capacity of Nb3Sn at 0,4,10 and 16 T 
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2.3 Volumetric specific heat of the MJR composite T<Tc 

 

As seen in the geometry section, the composite is made of Nb3Sn, copper and bronze. For 

the volumetric specific heat of copper, the following parameterization will be used:  

 

TTCCu ⋅+⋅= 4.978.6 3  [6] 

 

The same equation will be also used to calculate the volumetric specific heat of the 

bronze, considering negligible difference between copper and bronze. 

The volumetric specific heat of the composite will be calculated as the average, weighted 

over the areas, of the volumetric specific heat of each component, from tab. 2-1:   

 

CuCuNbSnBronzeCuNbSncomp CCCCCCC
474

117

474

52

474

305

474

117

474

52

474

305
++≈++=  

 

 

2.4 Critical current of the 1mm MJR strand  

 

At a fixed temperature the critical current of a MJR strand follows the following 

parameterization [7]: 

 

( )21

2

5.0 1
−− ⋅−⋅⋅′= CpkpkC BBBCI  

 

Where the peak field, Bpk , in a 1mm MJR  strand is [7]: 

 

)10648.0,10413.0max( 33

bgbgpk BIIBB −⋅⋅⋅⋅+= −−  

 

The measured strand, at 4.2K, has: 

 

[ ]ATC 5.049.12232 ⋅=′   [ ]TBc ⋅= 32.222  

 

For a background field of 12 T the critical current was about 705 A and the peak field 

about 12.3 T. Regarding the critical current density: 

 

( )21

2

5.0 1
____

−− ⋅−⋅⋅
′

== Cpkpk
C

C BBB
areacunon

C

areacunon

I
J  

 

For the 1mm MJR geometry presented in 2.1.: 

 

[ ]25.028987
422.0

49.12232

__

−⋅⋅==
′

mmAT
areacunon

C
 

 

This means that the Jc at 12.3 T is about 1670 A/mm
2
. 
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In order to calculate the temperature dependence we will use the following relations [7]: 

 

[ ]KTc 18)0( =    [8] 

 

( ) ( )

2

2

5.0

2
2

,
11''),( 






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
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
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T

T
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c
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pk

c

c  

 

Where: 

 

( ) 22 ,2.4 cc BB =ε  
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3. Magnetization energy stored in the filament 

 
We will consider the case when the superconductor is not magnetized and the external 

magnetic field is ramped up starting from 0T. 

The stored energy of the filament was calculated using the approach developed by 

Wilson (Wilson book page 133 and 134). According to Wilson the released energy 

density due to slab magnetization when the field was fully penetrated, fig.3.1, can be 

obtained by the following formula: 

( )
3

2

0

a
dJJdQ cc −= µ   (3.1) 

where 2a is the slab thickness. Using this energy 

density formula one can integrate it over the entire 

cross section of a circular shaped filament to obtain the 

total stored energy. In order to do the integration of 

(3.1) for a circle, a (slab thickness) was introduced as a 

function of y:   

( ) ( ) ( ) ( )
3

2,

2

0

ya
dJJdyyaJyQ ccc −⋅= µδ  

The next few equations help to follow how the 

analytical solution for calculating the stored energy was 

obtained in a case when the field was fully penetrated. 

 

2

2
22 1

F

y
FyFa −=−=  

 

( ) ( ) ( ) ( )
∫ 








−⋅=

F

ccc dy
ya

dJJyaJdQ
0

2

0
3

22 µ  

 

( ) ( ) ( )∫
−

⋅=
F

cc
c dyya

dJJ
JdQ

0

30

3
4

µ
 

 

( ) ( ) παα
π 16

3
cos 4

0

2

44

0

3
FdFdyya

F

== ∫∫  

 

( ) ( ) ( )
416

3

3
4 0440 cccc

c

dJJ
FF

dJJ
JdQ

−
=

−
⋅=

µ
ππ

µ
 

 

( )
244

2

40

0

04 c

J

cc J
F

dJJ
FQ

c

µπµ
π

⋅
=

−
= ∫  

 

Fig. 3.1 Filament fully penetrated: 

field distribution 



 13 

24
72

2

10
cJFQ

−⋅
=
π

  (3.2) 

 

Es 3T Jc=1.3*10^10 R=50micron  (1mm MJR) 

 

JouleJRQ c

424
72

1021.5
2

10 −
−

⋅=
⋅

=
π

 

 

Since we need to calculate the stored energy even if the 

field was not fully penetrated another approach was 

used. The stored energy of the magnetic field is:  

dVBE
V

⋅
⋅

= ∫ 2

02

1

µ
   

For a circular shaped filament using still the slab 

approach:  dydxBE

R a

⋅








⋅⋅
⋅

= ∫ ∫
0 0

2

0

4
2

1

µ
 

In order to calculate the above integral we have to make 

further assumptions. Increasing the background field, 

the magnetic field penetrates more and more into the 

superconductor filament. When the field is not 

completely penetrated, the penetration depth (ap) can be 

calculated using the Bean’s model, fig. 3.2:  

 

c

bg

p
J

B
a

0µ
=  � aa p ≤  

 

The filament will be fully penetrated when the  

magnetic field reaches the ‘total penetration’ field (Bp): 

 

aJB cp 0µ=  

 

Making the assumption that the field inside the conductor is cancelled due to 

magnetization effect the field produced by magnetization (BM) is:  

 

bgM BB −=  paax −≤  

 

( )[ ]{ } ( )axJaaxJBB cpcbgM −=−−⋅−−= 00 µµ   paax −>  

 

 

For a case when pbg BB > : 

 

( )axJB cM −= 0µ  

Fig. 3.2 Filament not fully penetrated: 

field distribution 
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To verify that this approach will give the same result as what we obtained in (3.2.) let us 

calculate the energy for a filament when the magnetic field is fully penetrated: 

 

( )axJB cM −= 0µ  

 

( ) dydxaxJE

F a

c ⋅








⋅−⋅
⋅

= ∫ ∫
0 0

222

0

0

4
2

1
µ

µ
 

 

( ) dydxax
J

E

F a

c ⋅








⋅−⋅
⋅

= ∫ ∫
0 0

2
2

0 4
2

µ
 

 

( ) 42

0

4
2

0

0

3
2

0

0 0

32

0

8

1

16

3
2

3
2

33
4

2
FJF

J
dya

J
dy

axJ
E c

c

F

c

F
a

c ⋅⋅=⋅⋅=⋅=










 −

⋅
⋅

= ∫∫ µππ
µµµ

 

 

24
72

2

10
cJFQ

−⋅
=
π

        

 

Indeed we obtained the same result. 

It is important to point out that this model is not exact since the finite cylindrical shape 

conductor can not be estimated as a slab so neither the current distribution neither the 

field distribution is exactly correct. Better value can be obtained by using finite element 

modeling. 
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4. Self-field instability: calculation of the ‘Self field’ energy released by 

the current redistribution  
 

Due to the self field the transport current flows as close as possible to the strand surface.  

The current flows at the critical current density of the conductor and it penetrates only as 

deep as it necessary to carry the transport current, shielding the interior of the conductor 

from the self-field (Wilson page 141).  

Taking as a reference a superconducting strand which has an annular section with an 

internal radius equal to Rf and an external radius equal to R, fig.4.1, the transport current 

will flow in the external shell between R and c, where c has to satisfy the following 

equation: 

 

 )( 22 cRI −= π  

 

 
 

 

During self field instability the current redistribute in the superconductor section 

producing heat.  

Based on the assumption that the temperature is uniform in the section of the 

superconductor where the current flows and Jc=f(T,Bpeak), we will be able to calculate the 

energy released by a complete redistribution of the transport current. 

 

 

 

Fig. 4.1 Transport current distribution in a superconducting strand 
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From page 141 in Wilson book, the released energy for a unit length of a conductor is: 

( )








−+−−−=
828

3
ln

2

1 42
42

0

εε
επλµ RdJJdQ cc  

Where 
R

c=ε  
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8

3
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Since the current is constant: 
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5 Enthalpy calculation and quench criteria 
 

If the quench current is lower than Ic, the first part of the quench development is 

characterized by redistribution of the transport current in the composite section. This part 

of the quench development will end at the time tf, when the transport current is 

completely distributed in the whole composite section. At tf, according to the Bean’s 

model and making the hypothesis that the temperature in the strand section is equal 

everywhere, the final current density, Jf, has to be: 

 

( ) ( )22

f

fcf
RR

I
TJJ

−
==
π

 

 

Using this relation and the parameterization of the critical current density, we can 

calculate the temperature, Tf , that the composite must have for a complete redistribution 

of the transport current. 

Once we have this temperature, we can calculate the enthalpy variation per unit length of 

the composite: 

 

( ) dTCRRH

fT

compf ∫−=∆
2.4

22π  

 

To find out at what transport current value will occur a quench we had to calculate both 

the enthalpy change value and the released energy (magnetization and self field) value as 

a function of the transport current. If the two value equal with each other we assume that 

the sample has quenched. This is obviously an adiabatic model since we assume that 

during the current redistribution process no heat escapes the conductor.  
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6 Quench current estimate based on Self field effects 
 

During V-I measurements of the 1 mm MJR strands we observed premature quenches in 

the low field region (~0-8T). The quench currents were lower than the Ic even if the 

measurement started with a strand not magnetized. In these conditions the magnetization 

energy stored in the filaments at the moment of the quench was negligible. The cause of 

the instability, during these measurements, is most likely the self field energy.  

In this chapter we will show and discuss the quench current calculated by the adiabatic 

model considering the amount of energy released during the current redistribution equal 

to the stored self field energy (chapter 4).  

The results of the calculations are summarized in fig.6.1; at low magnetic fields the 

quench current estimated by the model is much lower than the critical current, this 

difference gets smaller by increasing the magnetic field.  In fig. 6.2 the self field energy 

and the enthalpy margin are shown as a function of the current for different magnetic 

fields. At the current level where the two curves cross each other, the sample may quench 

due to self field instability.  

 

 

 

 
 

Fig. 6.1 Quench current estimate based on self field effect 
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 Fig. 6.2 Self-field energy and enthalpy margin for different magnetic fields 
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7 Quench current estimate based on Self field and Magnetization effect 
 

During V-H measurement the strand is strongly magnetized and the magnetization energy 

can not be neglected in calculating the quench current. In this paragraph we present the 

quench current values obtained by the model taking in to account that, during the current 

redistribution, both, the self field and magnetization energy are released.  

The magnetization energy is calculated for the case where the background magnetic field 

is ramped up from 0T starting with a strand not magnetized. In these conditions the 

magnetization energy stored in a filament can be calculated using the equation presented 

in chapter 3. The total amount of magnetization energy is calculated by multiplying the 

magnetization of a single filament by the total number of filaments and by the fraction of 

the composite area not occupied by transport current.  

These results are summarized in fig. 7.1. At high field values the quench current is almost 

the same as what was obtained by taking into account in the calculation the self field 

energy (for field higher than 4T the difference is less than 15%) only. However, at lower 

field values there is a significant difference. In particular around 1.2T the quench current 

has a minimum, it is almost by factor of two less than what was calculated for the self 

field case. 

 
 

Fig. 7.1 Quench current estimate based on self field and magnetization effect 
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8 Self Field in a strand cross section of the coil like sample 
 

In this chapter we estimate the value of the self field in the strand cross section of the coil 

like sample. This cross section is the intersection between the coil and the plane passing 

through the axis of the coil, fig. 8.1. 

The value of the self field inside a cross section of a strand can be described as the 

superimposition of two components: the first one, Bcoil, magnetic field from other part of 

the coil; the second component, Bj, dependent on the distribution of the current density in 

the strand cross section under examination. 

 

jcoilsf BBB
rrr

+=  

 

We will assume that the strand cross section is circular, the current density is everywhere 

perpendicular to the cross section and its value is only function of r, which is the distance 

from the center of the circle. With this hypothesis Bj has only tangential component and 

its value is: 
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2

0 rI
r

B j ⋅
=

π
µ

 (8.1) 

 

where I(r) is the total current in the circular area with radius r. 

The Bcoil has mainly a z component and it is anti parallel to the background field 

generated by the external solenoid magnet, fig.8.1 

Taking into account only the z component of the field (see fig 8.1), from a finite element 

analysis of a composite strand with a radius of 0.4 mm: 

 

)()(10648.0)( 3 aBaBIaB jCoilsf +=⋅−= −  

 

)()(10414.0)( 3 bBbBIbB jCoilsf +=⋅= −  

 

From eq 8.1 
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IbB j ⋅⋅= −3105.0)(  

 

Substituting: 

 

IIIaBIaB jCoil ⋅⋅−=⋅⋅+⋅−=−⋅−= −−−− 3333 10148.0105.010648.0)(10648.0)(  

 

IIIaBIbB jCoil ⋅⋅−=⋅⋅−⋅=−⋅= −−−− 3333 10086.0105.010414.0)(10414.0)(  
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We will make the following simplification. The field due to the coil itself at a particular 

location of the strand is constant and equal to the arithmetic average between the above 

described extreme points: 

 

IIBCoil ⋅⋅−=⋅⋅
+

−= −− 33 10117.010
2

086.0148.0ˆ  

 

 

 

 

Sample section 

Strand section 

Fig. 8.1 Cross section of the sample 
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9 Magnetization in the coil like sample due to self field 

 
Up to now, in the calculation of the magnetization energy, we neglected the magnetic 

field generated by the coil itself. The Bcoil self-field component described in the previous 

chapter should be treated as a background field consequently it increases the calculated 

value of the strand magnetization.  

In V-I measurements (starting with the sample not magnetized), by ramping up the 

current the strand gets slightly magnetized due the filed change induced by the adjacent 

coil turns.  

To take into account this effect in the model, the magnetization energy produced by the 

variation of the self field from 0 to Bcoil has to be added to the self-field energy. 

The self-field plays a role in V-H measurements as well since any current change will 

induce a magnetization as it was described above. Because of the self field, when we start 

to ramp up the field from 0T with transport current, the sample it is slightly magnetized 

even if it was not magnetized before ramping up the current. 

If we ramp up the magnetic field from 0 T under a transport current the magnetization 

direction due to self field has opposite sign relative to the magnetization due to the 

background field up ramp. This means that initially, the background field will reduce the 

magnetization due to self field. When the field generated by the magnet is bigger than 

two times of Bcoil , the distribution of the persistent current is practically the same as if the 

strand had been subjected to an external field increasing from 0T to BMagnet-BCoil. In this 

case the magnetization energy can be calculated by using the same formulation as it was 

used previously by substituting Bbg with BMagnet-BCoil. The magnetization energy for 

BMagnet-=0 is due to self-field. 

Since for 0T < BMagnet < 2 Bcoil , the calculation of the magnetization energy is a little 

more complicated and since the Bcoil value is quite small, we decided not to calculate Iq in 

this range.  

. In fig. 9.1 the quench current estimate is shown with and without taking into account the 

contribution of the magnetization energy due to self field effect in the coil like sample.  
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 Fig. 9.1 Effect of the magnetization produced by the self-field 
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10 Comparison with experimental results 

 
In this chapter we will show a comparison between the quench current estimated by the 

model and the results that we had obtained measuring a 1 mm MJR strand with a low 

RRR copper matrix (7). This sample is a good candidate for this adiabatic approach 

because of the low thermal and electrical conductivity of the copper matrix which does 

not allow large amount of energy to diffuse outside of the composite. 

The calculations presented in chapter 6 simulates the quench currents during V-I 

measurements starting with a sample not magnetized, while the calculations in paragraph 

7 are the simulation of V-H measurements starting from 0T with the sample not 

magnetized. The experimental data in these physical conditions are showed in fig. 10.1 

and compared with analytical simulations. 

The adiabatic model fits quite well the experimental data at fields lower than 6T, while it 

underestimates significantly the quench current at higher field values. This is probably 

due to the fact that the amount of energy that diffuses outside the composite (dynamic 

effect) during instability is not negligible at high field. 

At high field the energies associated with thermo-magnetic instabilities are very small, 

this means that even small energy diffusion can prevent a premature quench of the strand. 

For example during V-I measurements at 11T the maximum energy associated with the 

instability is less than 10 mJ/m, fig.6.2; an energy diffusion of that order of magnitude 

can prevent the strand from premature quenching. 

On the other hand, looking at fig. 6.2, we can see that the same amount of energy will not 

have any significant effect in the quench current value during V-I measurement at 1T. 

 

 
 Fig. 10.1 Comparison between model and experimental data 
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